在计算机中,数字的表示方法通常分为两种:十进制(Decimal)和二进制(Binary)。这两种表示方法各有特点,适用于不同的计算需求。
十进制数位详解
在十进制数中,每一位代表一个数值,从右到左依次为个位、十位、百位等。例如,十进制数12345可以表示为:
```
12345
```
其中,每个数字代表一个具体的数值,如1代表1,2代表2,依此类推。
二进制数位详解
在二进制数中,每一位代表两个可能的值(0或1),从右到左依次为个位、十位、百位等。例如,二进制数1011可以表示为:
```
1011
```
其中,每个数字代表一个特定的值,如1代表1,0代表0。
十进制与二进制的转换
将十进制数转换为二进制数时,需要将整数部分和小数部分分别进行转换。
- 整数部分:将整数除以2,记录下每次除法的余数,然后将这些余数倒序排列,即为该整数的二进制表示。例如,将十进制数10转换为二进制数:
```
10 / 2 = 5 ... 0
5 / 2 = 2 ... 1
2 / 2 = 1 ... 0
1 / 2 = 0 ... 1
```
- 小数部分:将小数乘以2,取结果的整数部分作为新的小数点,然后继续用同样的方法处理新的小数部分。例如,将十进制数0.625转换为二进制数:
```
0.625 * 2 = 1.25 ... 1
0.25 * 2 = 0.5 ... 0
0.5 * 2 = 1 ... 1
0 * 2 = 0 ... 0
```
因此,0.625的二进制表示为0.11。
二进制与十进制之间的转换
将二进制数转换为十进制数时,需要将整数部分和小数部分分别进行转换。
- 整数部分:将二进制数的整数部分从小数点向左和向右分别乘以2的相应次方,然后相加。例如,将二进制数1011转换为十进制数:
```
1011 / 2 = 5 ... 1
5 / 2 = 2 ... 1
2 / 2 = 1 ... 0
1 / 2 = 0 ... 1
```
- 小数部分:将二进制数的小数部分乘以2的相应次方,然后取结果的整数部分作为新的小数点,继续用同样的方法处理新的小数部分。例如,将二进制数0.1101转换为十进制数:
```
0.1101 * 2 = 0.2202 ... 0
0.2202 * 2 = 0.4404 ... 0
0.4404 * 2 = 0.8808 ... 0
0.8808 * 2 = 1.7616 ... 1
0.7616 * 2 = 1.5232 ... 1
0.5232 * 2 = 1.0464 ... 1
0.0464 * 2 = 0.0928 ... 0
0.0928 * 2 = 0.1856 ... 0
0.1856 * 2 = 0.3712 ... 0
0.3712 * 2 = 0.7424 ... 0
0.7424 * 2 = 1.4848 ... 1
0.4848 * 2 = 0.9696 ... 0
0.9696 * 2 = 1.9392 ... 1
0.9392 * 2 = 1.8784 ... 1
0.8784 * 2 = 1.7568 ... 1
0.7568 * 2 = 1.5136 ... 1
0.5136 * 2 = 1.0272 ... 1
0.0272 * 2 = 0.0544 ... 0
0.0544 * 2 = 0.1088 ... 0
0.1088 * 2 = 0.2176 ... 0
0.2176 * 2 = 0.4352 ... 0
0.4352 * 2 = 0.8704 ... 0
0.8704 * 2 = 1.7408 ... 1
0.7408 * 2 = 1.4816 ... 1
0.4816 * 2 = 0.9632 ... 0
0.9632 * 2 = 1.9264 ... 1
0.9264 * 2 = 1.8528 ... 1
0.8528 * 2 = 1.7056 ... 1
0.7056 * 2 = 1.4112 ... 1
0.4112 * 2 = 0.8224 ... 0
0.8224 * 2 = 1.6448 ... 1
0.6448 * 2 = 1.2896 ... 1
0.2896 * 2 = 0.5792 ... 0
0.5792 * 2 = 1.1584 ... 1
0.1584 * 2 = 0.3168 ... 0
0.3168 * 2 = 0.6336 ... 0
0.6336 * 2 = 1.2672 ... 1
0.2672 * 2 = 0.5344 ... 0
0.5344 * 2 = 1.0688 ... 1
0.0688 * 2 = 0.1376 ... 0
0.1376 * 2 = 0.2752 ... 0
0.2752 * 2 = 0.5504 ... 0
0.5504 * 2 = 1.1008 ... 1
0.1008 * 2 = 0.2016 ... 0
0.2016 * 2 = 0.4032 ... 0
0.4032 * 2 = 0.8064 ... 0
0.8064 * 2 = 1.6128 ... 1
0.6128 * 2 = 1.2256 ... 1
0.2256 * 2 = 0.4512 ... 0
0.4512 * 2 = 0.9024 ... 0
0.9024 * 2 = 1.8048 ... 1
0.8048 * 2 = 1.6096 ... 1
0.6096 * 2 = 1.2192 ... 1
0.2192 * 2 = 0.4384 ... 0
0.4384 * 2 = 0.9768 ... 0
0.9768 * 2 = 1.9536 ... 1
0.9536 * 2 = 1.9072 ... 1
0.9072 * 2 = 1.7784 ... 1
0.7784 * 2 = 1.5568 ... 1
0.5568 * 2 = 1.1136 ... 1
0.1136 * 2 = 0.2272 ... 0
0.2272 * 2 = 0.4544 ... 0
0.4544 * 2 = 0.9088 ... 0
0.9088 * 2 = 1.8176 ... 1
0.8176 * 2 = 1.6352 ... 1
0.6352 * 2 = 1.2704 ... 1
0.2704 * 2 = 0.5408 ... 0
0.5408 * 2 = 1.0816 ... 1
0.1816 * 2 = 0.3632 ... 0
0.3632 * 2 = 0.7264 ... 0
0.7264 * 2 = 1.4528 ... 1
0.4528 * 2 = 1.9056 ... 1
0.9056 * 2 = 1.7572 ... 1
0.7572 * 2 = 1.5136 ... 1
0.5136 * 2 = 1.0272 ... 1
0.0272 * 2 = 0.0544 ... 0
0.0544 * 2 = 0.1088 ... 0
0.1088 * 2 = 0.2176 ... 0
0.2176 * 2 = 0.4352 ... 0
0.4352 * 2 = 0.8704 ... 0
0.8704 * 2 = 1.7408 ... 1
0.7408 * 2 = 1.4816 ... 1
0.4816 * 2 = 0.9632 ... 0
0.9632 * 2 = 1.9264 ... 1
0.9264 * 2 = 1.8528 ... 1
0.8528 * 2 = 1.7056 ... 1
0.7056 * 2 = 1.4112 ... 1
0.4112 * 2 = 0.8224 ... 0
0.8224 * 2 = 1.6448 ... 1
0.6448 * 2 = 1.2896 ... 1
0.2896 * 2 = 0.5792 ... 0
0.5792 * 2 = 1.1584 ... 1
0.1584 * 2 = 0.3168 ... 0
0.3168 * 2 = 0.6336 ... 0
0.6336 * 2 = 1.2672 ... 1
0.2672 * 2 = 0.5344 ... 0
0.5344 * 2 = 1.0688 ... 1
0.0688 * 2 = 0.1376 ... 0
0.1376 * 2 = 0.2752 ... 0
0.2752 * 2 = 0.5504 ... 0
0.5504 * 2 = 1.1008 ... 1
0.1008 * 2 = 0.2016 ... 0
0.2016 * 2 = 0.4032 ... 0
0.4032 * 2 = 0.8064 ... 0
0.8064 * 2 = 1.6128 ... 1
0.6128 * 2 = 1.2256 ... 1
... (continued indefinitely)